Buteyko Breathing Technique Reduces Hyperventilation–Induced Hypocapnoea and Dyspnoea after Exercise in Asthma.

G. Austin, DipPhys\(^1\), C. Brown, BSc\(^1\), T. Watson, PhD\(^2\) and I. Chakravorty, PhD\(^1\). Email: g.austin@nhs.net

\(^1\) PG Med Sch, Lister Hospital, Stevenage, Herts, United Kingdom and \(^2\) Physio Sch, U Hertfordshire, Hatfield, Herts, United Kingdom.

Introduction

In Asthma, hyperventilation during and after exercise can increase the work of breathing and dyspnoea delaying recovery and leading to a worsening of asthma control. The Buteyko Breathing Technique (BBT) is gaining support as a complementary therapy to improve asthma control. Although the original hypothesis suggested that the BBT works by increasing carbon–dioxide (CO2) levels, research to date is yet to demonstrate this phenomenon.

Study Design

We conducted a randomised, controlled trial exploring a 5–week course of BBT on post–exercise end–tidal CO2 (EtCO2) and dyspnoea versus conventional therapy. Subjects underwent treadmill exercise testing to a symptom–limited maximum at baseline, 1 & 6 weeks.

Results

Of 32 subjects enrolled, 20 (15 female) completed the study (9 BBT vs 11 controls). Mean(SD) age was 48(15)yrs, BMI 28(5.6)kgm\(^{-2}\), FEV1 89 (24.7)%pred. EtCO2 (mmHg) and Borg Breathlessness score at 5min post–exercise were significantly improved with BBT, \(*p <0.05\) (Repeated meas gen linear model).

Impact of BBT on EtCO2 and Breathlessness scores

<table>
<thead>
<tr>
<th></th>
<th>EtCO2 peak exerc</th>
<th>EtCO2 1.5 mins post exerc</th>
<th>EtCO2 2.5 mins post exerc</th>
<th>Exerc time (mins)</th>
<th>Borg breathlessness 5 mins post exerc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>35(4) vs 35(4)</td>
<td>38(6) vs 38(5)</td>
<td>35(5) vs 36(5)</td>
<td>5(3) vs 7(4)</td>
<td>0.8(0.8) vs 1.7(1.1)</td>
</tr>
<tr>
<td>1st week post</td>
<td>47(6) vs 40(3)</td>
<td>43(5) vs 36(4)</td>
<td>40(4) vs 34(4)</td>
<td>5(3) vs 6(3)</td>
<td>0.6(0.7) vs 1.5(0.7)</td>
</tr>
<tr>
<td>6 weeks post</td>
<td>46(8) vs 40(6)</td>
<td>43(4) vs 36(5)</td>
<td>39(5) vs 35(5)</td>
<td>7(4) vs 7(3)</td>
<td>1(1.3) vs 1.5(1.1)</td>
</tr>
</tbody>
</table>

\(*p<0.05\); Mean (SDev); BBT vs Controls

Conclusion

Our study demonstrated the hypothesised physiology of BBT, improving hyperventilation induced hypocapnoea and breathlessness, following maximal exercise. By teaching patients to reduce hypernoea of breathing (the rate & depth), BBT may reduce asthma symptoms and improve exercise tolerance and control.

This abstract is funded by: Departmental funds.

Am J Respir Crit Care Med 179;2009:A3409

Internet address: www.atsjournals.org